skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farley, Jared"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Geoengineering Model Intercomparison Project (GeoMIP) held its 14th annual workshop, with almost 70 in-person participants and 15 remote participants for a robust discussion about future experiments and community needs in light of phase 7 of the Coupled Model Intercomparison Project (CMIP7). 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Stratospheric aerosol injection (SAI) would involve the addition of sulfate aerosols in the stratosphere to reflect part of the incoming solar radiation, thereby cooling the climate. Studies trying to explore the impacts of SAI have often focused on idealized scenarios without explicitly introducing what we call ‘inconsistencies’ in a deployment. A concern often discussed is what would happen to the climate system after an abrupt termination of its deployment, whether inadvertent or deliberate. However, there is a much wider range of plausible inconsistencies in deployment than termination that should be evaluated to better understand associated risks. In this work, we simulate a few representative inconsistencies in a pre-existing SAI scenario: an abrupt termination, a decade-long gradual phase-out, and 1 year and 2 year temporary interruptions of deployment. After examining their climate impacts, we use these simulations to train an emulator, and use this to project global mean temperature response for a broader set of inconsistencies in deployment. Our work highlights the capacity of a finite set of explicitly simulated scenarios that include inconsistencies to inform an emulator that is capable of expanding the space of scenarios that one might want to explore far more quickly and efficiently. 
    more » « less